You are here: Home Teaching/Lehre Seminar Distributed Algorithms, …

Seminar Distributed Algorithms, Network Algorithms and Cryptography (WiSe 2024/25)

Seminar for Master students of Computer Science and Embedded Systems Engineering with research topics relevant to the chair.

News

  • 8.11.2024: Topics are assigned and schedule is available. Please check for correctness.
  • 07.10.2024: ILIAS online
  • 14.10.2024-22.10.2024 If you want to participate, submit your choice of topics to the forum of ILIAS.

Dates

  • 1st meeting, 18.10.2024, 12-14  (051-00-006), presentation of the topics, organization
  • 14.10.2024-22.10.2024:  submit 3 topics of your choice to the forum of ILIAS
  • 31.01.2025: Deadline for report
  • 10.02.2025 9-17, block seminar day 1 (051-00-006)
  • 11.02.2025 9-17, block seminar day 2 (051-00-006)

Contents

We discuss up-to-date topics of distributed algorithms, cryptography, localization and wireless communication. More topics appear here soon.

    1. Localization
      1. Tabaghi, P. and Dokmanić, I., 2020. Hyperbolic distance matrices. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1728-1738).
      2. Aubry, A., Babu, P., Braca, P., De Maio, A. and Panwar, K., 2024. Sensor Placement Strategies for Target Localization Via 3D AOA Measurements. IEEE Transactions on Aerospace and Electronic Systems.
      3. Shuai Huang, and Ivan Dokmanić. "Reconstructing point sets from distance distributions." IEEE Transactions on Signal Processing 69 (2021): 1811-1827. (JB)

      4. Kreković, Miranda, Ivan Dokmanić, and Martin Vetterli. "Shapes from echoes: uniqueness from point-to-plane distance matrices." IEEE Transactions on Signal Processing 68 (2020): 2480-2498. (JB)

      5. Plinge, A., Fink, G.A. and Gannot, S., 2017. Passive online geometry calibration of acoustic sensor networks. IEEE Signal Processing Letters, 24(3), pp.324-328.(CS)
      6. Crocco, M., Trucco, A. and Del Bue, A., 2017. Uncalibrated 3D room geometry estimation from sound impulse responses. Journal of the Franklin Institute, 354(18), pp.8678-8709.
    2. Cryptography
      1. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T. and Tunge, T., 2021, May. Lattice-based proof of shuffle and applications to electronic voting. In Cryptographers’ Track at the RSA Conference (pp. 227-251). Cham: Springer International Publishing. (CS)
      2. Goldreich, O. and Oren, Y., 1994. Definitions and properties of zero-knowledge proof systems. Journal of Cryptology, 7(1), pp.1-32. (CS)
      3. Ronald L. Rivest, Adi Shamir, and Yael Tauman. 2001. How to Leak a Secret. In Proceedings of the 7th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology (ASIACRYPT '01). Springer-Verlag, Berlin, Heidelberg, 552–565.
      4. Haines, T., Lewis, S.J., Pereira, O. and Teague, V., 2020, May. How not to prove your election outcome. In 2020 IEEE Symposium on Security and Privacy (SP) (pp. 644-660). IEEE.
      5. Soewito, B. and Marcellinus, Y., 2021. IoT security system with modified Zero Knowledge Proof algorithm for authentication. Egyptian Informatics Journal, 22(3), pp.269-276.
      6. Klimburg-Witjes, N. and Wentland, A., 2021. Hacking humans? Social Engineering and the construction of the “deficient user” in cybersecurity discourses. Science, Technology, & Human Values, 46(6), pp.1316-1339.
    3. Visual Cryptography
      1. Liu, Z., Zhang, Z. and Fang, H., 2023. Approximating complex 3D curves using origami spring structures. Communications Engineering2(1), p.90. (SM)
      2. Abrahamsen, M., Adamaszek, A. and Miltzow, T., 2021. The art gallery problem is∃ ℝ-complete. ACM Journal of the ACM (JACM), 69(1), pp.1-70.
    4. MIMO and Near-Field
      1. Chuah, C.N., Tse, D.N.C., Kahn, J.M. and Valenzuela, R.A., 2002. Capacity scaling in MIMO wireless   systems under correlated fading. IEEE Transactions on Information theory, 48(3), pp.637-650. (CS)
      2. McKay, M.R., Collings, I.B. and Tulino, A.M., 2009. Achievable sum rate of MIMO MMSE receivers: A general analytic framework. IEEE Transactions on Information Theory, 56(1), pp.396-410. (CS)
      3. N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich and M. Coulon, "Direct Localization for Massive MIMO," in IEEE Transactions on Signal Processing, vol. 65, no. 10, pp. 2475-2487, 15 May15, 2017, doi: 10.1109/TSP.2017.2666779. (CS)
      4. Cui, M., Wu, Z., Lu, Y., Wei, X. and Dai, L., 2022. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions. IEEE Communications Magazine, 61(1), pp.40-46.
    5. Peer-to-Peer Networks
      1. Lau, L. C., Tung, K. C., Wang, R.: Cheeger Inequalities for Directed Graphs and Hypergraphs using Reweighted Eigenvalues. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC 2023), pp. 1834–1847. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3564246.3585139 (SN)

      2. Dinitz, Y., Dolev, S. & Kumar, M. Local Deal-Agreement Algorithms for Load Balancing in Dynamic General Graphs. Theory Comput Syst 67, 348–382 (2023). https://doi.org/10.1007/s00224-022-10097-6 (SN)

      3. Sauerwald, T. and Sun, H., 2012, October. Tight bounds for randomized load balancing on arbitrary network topologies. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (pp. 341-350). IEEE. (CS)
      4. Bernhard Haeupler, Harald Räcke, and Mohsen Ghaffari. 2022. Hop-constrained expander decompositions, oblivious routing, and distributed universal optimality. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022). Association for Computing Machinery, New York, NY, USA, 1325–1338. https://doi.org/10.1145/3519935.3520026 (SN)
      5. Yuval Gelles and Ilan Komargodski. 2024. Optimal Load-Balanced Scalable Distributed Agreement. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing (STOC 2024). Association for Computing Machinery, New York, NY, USA, 411–422. https://doi.org/10.1145/3618260.3649736 (SN)
      6. Lamport, L., Shostak, R. and Pease, M., 2019. The Byzantine generals problem. In Concurrency: the works of leslie lamport (pp. 203-226).

Supervisors

  • CS: Christian Schindelhauer (schindel at tf dot uni dash freiburg dot de)
  • JB: Joan Bordoy (bordoy at informatik dot uni dash freiburg dot de)
  • SM: Sneha Mohanty (mohanty at informatik dot uni dash freiburg dot de)
  • SN: Saptadi Nugroho (saptadinugroho at gmail dot com)

Schedule

Nr.NachnameVornameThemaKurztitelVortragstermin
1 Rawe Jana 13 Recon. Point Sets 10.02.2024 9:00
2 Locker Nico 14 Shapes from Echoes 10.02.2024 9:45
3 Miodek Florian 16 Uncal. 3D Room 10.02.2024 10:30
4 Kassubek Erik Daniel 12 Sensor Placement 10.02.2024 11:15
5 Klasen Veronika Franziska 22 Properties ZKP 10.02.2024 13:00
6 Ganter Fabian 21 Proof of a Shuffle 10.02.2024 13:45
7 Dutt Richard 25 IOT Security ZKP 10.02.2024 14:30
8 Ettner Ludwig 24 How not to Prove 10.02.2024 15:15
8 Pfirsig Tom 23 Leak a Secret 10.02.2024 16:00
9 Kirch Paul 26 Hacking Humans 10.02.2024 16:45
10 Hamberger Felix 31 Approx 3D Curves 11.02.2024 9:00
11 Aritonang Ria Paska 32 Art Gallery R 11.02.2024 9:45
12 Aydin Adem 56 Byzantine Generals 11.02.2024 10:30
13 Meysen Robert 43 Localization MIMO 11.02.2024 11:15
14 Bundy Matthias 44 Near-Field MIMO 11.02.2024 13:00
15 Celebi Yigit Deniz 51 Cheeger 11.02.2024 13:45
17 Dar Momina Atif 53 Tight Load Balancing 11.02.2024 14:30
18 Wahl Johannes Georg 54 Hop Expander Decomp 11.02.2024 15:15

Deliverables

For a successful participation you have to 

  1. Write a written 2-5 pages report (LaTeX) and upload it using ILIAS until 31.01.2025 (1/4)
  2. Give a 30 minute final presentation during the block seminar (upload slides to ILIAS) (1/2)
  3. Survive the 15 minute discussion after your presentation (1/4)

Presentations may be recorded.  Attendance to 12 final presentations (plus your own) is mandatory.